
Journal of Statistical Physics, Vol. 44, Nos. 5/6, 1986 

Lattice Gas Generalization of the Hard 
tiexagon Model. II. The Local Densities as 
Elliptic Functions 

George E. Andrews 1'2 and R. J. Baxter 3 

Received April 24, 1986 

In a previous paper we considered an extension of the hard hexagon model to a 
solvable two-dimensional lattice gas with at most two particles per pair of 
adjacent sites. Here we use various mathematical identities (in particular Gor- 
don's generalization of the Rogers-Ramanujan relations) to express the local 
densities in terms of elliptic functions. The critical behavior is then readily 
obtained. 
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1. I N T R O D U C T I O N  

This is a continuation of an earlier paper, (~ hereinafter referred to as I. 
There we remarked that the solution (2) of the hard hexagon model involved 
the well-known Rogers-Ramanujan  identities, (3"4) and that this suggested 
the existence of solvable square-lattice statistical mechanical models 
corresponding to Gordon 's  (5) generalized identities. Such models would 
have at most n - 1 particles per pair of adjacent sites (n = 2 corresponding 
to the original hard hexagon model). Their Boltzmann weights would 
satisfy the "star-triangle" relations. 

We went on to obtain the n = 3 solution of the star-triangle relations, 
and to use corner transfer matrices to write the local densities as multiple 
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sums (similar to one-dimensional partition functions). Kuniba, Akutsu, 
and Wadati (6) have independently obtained the n = 3, 4, and 5 solutions. 
Partly guided by their n = 4 result, we conjectured in I the arbitrary-n mul- 
tiple sum expressions for the local densities. 

Another generalization of the n = 2 hard hexagon model is the restric- 
ted eight vertex solid-on-solid (8VSOS) model. (7) In that case the multiple 
sums could be expressed in terms of Gaussian polynomials, which are 
q-series analogues of binomial coefficients that occur in the theory of 
partitions38) For  our n = 3 model we have found that the sums can be 
expressed in terms of q-series trinomial coefficients. We give the details of 
these fascinating identities in a separate publication; here we quote the 
relevant large-lattice results and use them to express the local densities and 
order parameters in terms of elliptic functions. The critical behavior is then 
readily obtained. 

2. THE MULTIPLE-SUM EXPRESSIONS 

The elliptic 0 functions of argument u and nome pl/2 (where IPL < 1) 
are 

01(u,p)=2P 1/8sinu ~I ( 1 - 2 p J c o s 2 u + p 2 J ) ( 1 - p  j) (2.1a) 
j = l  

04(u,p)= FI (1-2pl2j-l)/2cos2u+ p 2i l ) ( 1 - p  j) (2.1b) 
j = l  

( ) O2(u,p)=01 u + ; , p  , 03(u,p)=04 u+-~,p (2.1c) 

In equation (4.1) of I we express the Boltzmann weights of the n =  3 
model in terms of 01 functions, all of n o m e  pl/2, and with arguments 
depending on a variable u which is restricted to the interval - ( 5 2 / 1 4 ) <  
u < ~/7. We define an integer t by 

t = 2  if 0 < u<7~/7 
(2.2) 

= - 5  if - ( 5 2 / 1 4 ) < u < 0  

There are then four separate cases, or regimes, to consider 

I: p < 0 ,  t =  - 5  

II: p > 0 ,  t = - 5  

III: p > 0 ,  t = 2  
(2.3) 

IV: p < 0 ,  t = 2  
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The parameter  p is at our disposal, and we can introduce a related 
parameter  s by 

IPl = e  2~rs (2.4) 

Limiting special cases occur when ]p[ = 1 (which is complete order or dis- 
order) and when p = 0 (when the system is critical). 

As in (5.16) of I, for integer values of a, b, c we define a function 
H(a, b, c) by 

p > O :  H(a, b, c ) =  - [ a - c l / 2  

= - ( a + c +  1)/2 

p < O :  H(a, b, c)=b 

if a + c i s e v e n  

if a + c i s o d d  
(2.5a) 

(2.5b) 

We further define (for 1 ~< a, b, c ~ 3, b + c >~ 4 and q ~ C) the function 

Xm(a, b, c; q ) = - - 2 " " 2  qYjH(aj,aj+l,aj+2) (2.6) 
G2 O'm 

where the inner summation is from j = 1 to j = m and the outer sum is over 
all integer values of a2,--., 0"m satisfying 

0~<~j, 0 ~< crj+ aj+ 1 ~< 2, l ~ < j ~ < m + l  

al = 3 - a ,  O-m+ I = 3 - b ,  0"m+2 = 3 - -  C 

Now we take 

and set 

(2.7) 

q = e ~'/7" (2.8) 

F(a) = 01(~ra/7, p) q ( 3 -  a)(4 a)/14Xm(a ' b, c; q) (2.9) 

where we have dropped the explicit dependence in m, b, and c. Then the 
probability that a site deep inside the lattice contains 3 -  a particles (with 
a = l ,  2, o r3 )  is 

P(a) = F(a)/[F(1) + F(2) + F(3)]  (2.10) 

Thus we can regard F(a) as an unnormalized probability. 
We have changed notation slightly from I: the integer arguments of 

Xm, F, P are now a, b, c rather than ~i, am+l, am+2. The old and new 
arguments are related by (2.7). 

As defined, P(a) has an implicit dependence on rn, b, and c (and of 
course on p, or equivalently, s). In the large-lattice limit we let m become 
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large. We find that P(a) then tends to a limit, except that in regimes III 
and IV the limit may depend on whether it is taken through even or odd 
values of m. In regime II it depends on whether it is taken through values 
equal to 0, 1, 2, 3, or 4, modulo 5. 

This alternation of the limit reflects the fact that the system is then in 
an ordered phase. For instance, in regime III there is a phase with a 
ground state in which alternate sites have 0 and 2 particles. We can regard 
O'm +1 and am + 2 as occupation numbers of boundary sites, and these should 
be fixed at the appropriate ground state values. If the ground state is kept 
fixed (relative to the center site 1 with occupation number a~), then as m 
increases through integer values the boundary sites move, so a,,,+ 1 and 
am + 2 should alternately take the values 0 and 2, i.e., b and c should alter- 
nately equal 3 and 1. If one thus makes b and c dependent on m, then P(a) 
tends to a limit through all values of m. Alternatively, if one fixes b and c, 
then site 1 moves relative to the ground state, and so P(a) alternates as m 
increases. 

If the system is disordered, then P(a) should tend to a limit as m 
becomes large, and this limit should be independent of b and e. This occurs 
in regime I. 

From (2.5) and (2.6), for finite m each Xm(a, b, c; q) is a polynomial in 
q (in regimes II and III actually a polynomial in q2), possibly multiplied by 
a negative integer power. As we remarked above we have expressed these 
polynomials in terms of q-series trinomial coefficients, and give the details 
elsewhere. In the next section we give the large-m limiting behavior from 
which the ordered phases can be deduced. 

From (2.3) and (2.8), note that 0 < q <  1 in regimes I and II while 
q > 1 in regimes III and IV. 

We need to use the functions (defined for Ixl < 1, r > O) 

Q(x)=  f i  ( 1 - x  s) (2.11) 
j = l  

R(x)=  f i  ( 1 - x  2j-~) (2.12) 
j - - 1  

{r,s,t;x}= ~ x (rj2+~J+')/2 (2.13) 
j =  --~3 

{r,s,t;x}_= ~. ( - l ) J x  (r~2+~j+')/2 (2.14) 
j =  --~3 

= x '/2 f i  (1--XrJ--(r--s)/2)(1--XO--(~+')/2)(1--X rj) (2.15) 
j = l  
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They satisfy the conjugate modulus relations (9) true for all ~, r, s, t provided 
e > 0  and r > 0  

Q(e-2~)=e-1/2expErc(e-e 1)/12] Q(e -2~/~) (2.16) 

R(e 2=')=2~/2expE-~z(2e+8 ~)/24]/R(e ~/~ (2.17) 

R ( - e  - ~ )  = expETr(e -1 - e)/24] R ( - e  "/~') (2.18) 

{r, s, t; e -2~' } = (re) -1/2 e-('-~:/4~)~'O3Ozs/2r, e -2"/r~) (2.19) 

{F, S, t; e - 2 ~ 8 } _  = (FS) 1/2 e (t-s2/4r)TreO2(~s/Rf , C -2x/r8) (2.20) 

3. L A R G E - m  L I M I T I N G  V A L U E S  

Reg ime  I. We have discussed this case in I, remarking how the 
limiting value of Xm can immediately be obtained from Gordon's identity 

lim q(b 3)mXm(a,b,c;q)= FI ( 1 - q J )  -1 
m ~ o v  j = l  

jvaO,+_a (rood 7) 

= {7, 7--2a, 0; q} /Q(q) (3.1) 

Using (2.9) and (2.20), ignoring a-independent factors that cancel out of 
(2.10), it follows that 

F(a) = 01(real7, - e  -2~s) 010za/7, e 4~s/5) (3.2) 

R e g i m e  II. For finite m, the polynomials of this model are very dif- 
ferent from those of the 8VSOS model. (7~ Even so, in the limit of large m, it 
turns out that in regime II (and in regime I) we regain basically the 8VSOS 
results. Let xm(a,b, c;q) be the function defined (for r = 7 )  in (2.6.1) of 
Ref. 7. Then we find, for m large and a = 1, 2, 3, that 

Xm(a,l, 3;q)=q-m(m+l)X2mt~a,[~ 1,2;q 2) (3.3) 

where zl, %, r3 = 1, 5, 3. When we say that an equation is true "for m 
large," we mean that the ratio of the LHS to the RHS tends to unity as 
m ----~ oo. 

Also, by considering the recursion relations between Xm and Xm_ 1, we 
can verify that for m large 

Xm(a, b, c; q)= q [3m2+~(b'c)m+fl(b)]/5S [a" m + ~(b,c)\ , q )  (3.4) 
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where l ~ a , b , c ~ < 3  and 

c~(1, 3), ~(3, 3), cr 3), c~(2, 2), c~(3, 2), c~(3, 1 )=0 ,  1, 2, 3, 4, 6 
(3.5) 

/?(1),/?(2),/3(3) = 3, 5, 6 

Sm+ 5(a; q) = Sm(a; q) (3.6) 

The function S contains an overall multiplicative fractional power of q, but 
is otherwise Taylor-expandable in powers of q2. 

We can use (3.3) and (3.4) to express S in terms of x. Taking 
)Cm(a , b, c; q) to be the function defined in (2.6.52) of Ref. 7, we find that 

Sin(a; q) = 22m(%, 1, 2; q2) (3.7) 

Hence, from (2.6.53) of Ref. 7 (with r = 7) 

Sm(a; q) = qa(7--a)/1011 . . . . .  +(to 1)/2 (3.8) 

the function Oa, j being defined as in Section 2.6 of Ref. 7, but with q therein 
replaced by q2. We have used the fact that % ( 7 -  r a )=  a ( 7 -  a). 

From (2.9), (3.4), and (3.8), we can now express F(a) in terms of 0. 
The next step is to use (3.3.7) of Ref. 7, which is effectively a "conjugate 
modulus" identity; unfortunately it contains an error: ( r - a )  2 should be 
replaced by ( r -  2a) 2. Doing this, noting that r, ~ in Ref. 7 now becomes 7, 
2rts, and ignoring a-independent factors of F(a) that cancel out of (2.10), 
we obtain 

F(a) = 01(~%/7, e 2rcs) ,~ . . . .  +c~(b,c)+(Va-1) /2  (3.9) 

[We have used the fact that Ol(rca/7, x) = 01(rc~a/7, x).] 
From (3.3.10) through (3.3.12) of Ref. 7, for general integer values of r, 

we can regard the 2a, j as defined by the periodicity condition 

l~a , j+r  2 = "~a,j (3.10) 

together with the identity (true for all complex numbers u and all 
integers a) 

Q(t) 3 01(~a/r, t) 04(ru, t r) 
2tl/SQ(tr) 2 04(//, t) 04(u + 7za/r, t) 

r ~ 3 [ n ( r - -1)  nj 7~a 1 
4 ( r - - 2 ) j  2 r - -4  r - -2  r ( r - -2 ) ' t l / ( r -2 )  (3.11) 

where t = e  -2~s/(r-2). In our case we have r =  7. 
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Note that m still enters (3.9), but because of (3.10) it only enters via its 
value to modulo 5. Thus P(a) tends to a limit if m is taken to infinity 
through values differing by integer multiples of 5. 

Regime Ill. In regime III, and also in regime IV, we find that the 
large-m results for Xm(a, b, e; q) take the form 

Xm(a,b,c;q)=(_l)a[~m(2a, b,c;q-1)_~m(7_2a, b,c;q 1)] (3.12) 

where G m  is a sum of modular forms. Note that t = 2 in regimes III and IV, 
so from (2.8) we see that the argument q of Xm(a, b, c; q) is greater than 1. 

Since a = 1, 2, or 3, the function Gm(J', b, c; q - l )  is needed for j =  
1, 2 ..... 6. Setting 

D 1 . . . . .  D 6 = 0, 1, 3, 7, 13, 20 (3.13) 

we also find it convenient to introduce a function Gin(j, b, c; q) by 

Gm(.h b, c; q) = qDJGm(j, b, c; q) (3.14) 

Using (2.9), together with the properties 01( -u ,p )=-Ol (u ,p )=  
01(u+r~, p), we find that (for a =  1, 2, 3) 

F(a) = ~ Ol(4rcj/7, p) q-(6j 8)(j-l~/7Gm(~ h b, c; q- ' )  (3.15) 
j = 2a,7 -- 2a 

the sum being over only two values: j = 2a and j =  7 -  2a. 
Specializing to regime III, we find that in the limit of m large, for j = 

1,..., 6 

Gm(j,Z,Z;q)={35,20j-7,2jz-1;q2}/[R(q2)Q(q2)] (3.16a) 

Gm(j, 3, 3; q )=  {35, 20 j -21 ,  2 ( j -  1)2; q2}/[R(q2) Q(q2)] (3.16b) 

for (b, c )=  (3, 2) or (2, 3) 

Gm(L b, c; q) = JR(-q){35 ,  2 0 j -  14, 2j2-2j;  q2} + sign(b - c ) ( -  1) m R(q) 

x {35, 2 0 j -  14, 2 j2-2j ;  qZ} _]/[2Q(q;)] 
(3.16c) 

and for (b, c) = (3, 1) or (1, 3) 

Gm(j, b, c; q) 

= [R(--q){35, 20j--28, 2 j 2 - 6 j +  4; q2} 

+ sign(b - c ) ( -  1) ~ R(q){35, 2 0 j -  28, 2 j2-  6j + 4; q2} _ ~/[2Q(q2)] 
(3.16d) 
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The functions {r, s, t; x}, {r, s, t; x} are defined in (2.13), (2.14). 
Define e(b, c) by 

c~(2, 2) = 1, c~(2, 3) = c~(3, 2) = 2, c~(3, 3 ) =  3 

c~(1, 3) = e(3, 1 ) = 4  
(3.17) 

Then by using the conjugate modulus transformations (2.16)-(2.20), ignor- 
ing a-independent factors that cancel out of (2.10), from (3.15) we find 
that, for m large, 1 ~< a, b, c ~< 3, b + c >~ 4 

){ [7 F(a) = ~ 01 , e 27cs 03 
j = 2a,7 2a 

-~ s i g n ( b - - c ) ( - -  1) m ~(S)0  2 [ 2 ; J  

~(b, c) ] 
10 ' e-~S/S 

10 ' g-'W5 (3.18) 

where we take sign(0)= 0, and 

~(s) = R(e-2'~/v~)/R(-e 2~/7~) 

=2X/Ze 7,w16/[R(e-7~S) R ( _  e 7~,/2)] 

= 01(rr/4 , e -7~s /2 ) /04 ( r c /4  , e-V-s/2) 

= kl/4 (3.19) 

k being the elliptic modulus with nome e 7rcs/2 (Eq. 8.197.3 of Ref. 10). 

R e g i m e  IV. As in regime III, we find that the large-m results take 
the form (3.12)-(3.15), where Gm(j, b, c; q) is expressible in terms of the 
modular functions (2.11)-(2.15). Since H(a, b, c) is now given by (2.5b), 
Xm(a, b, c; q), and hence Gm(j, b, c; q) is independent of c. We find, for m 
large and j = 1 . . . . .  6 ,  that 

Gm l(J, 1, c; q) = Gm( j, 3, c; q) 

=q-m2/2[R(--ql/2){21, 12j-- 14, 0; q} 

+ (-- 1) m R(ql/2){21, 12j-- 14, 0; q}_ ]/[2Q(q)] (3.20a) 

Gm(L2, c ; q ) = q  m(m+l)/2{21, 12j--V, 2 j - -Z;q} /[R(q)  Q(q)] (3.20b) 

We have actually obtained the large-m behavior of Xm(a , b, c; q) by 
two rather different routes. One gives (3.20), the other replaces (3.20a) by 
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Gzm_l(j, 1, c; q)=G2m(j, 3, e; q) 

= q  2m2[{84, 48j--49, 6(j--  1)2; q2} 

+ {84, 48j-- 7, 6)'2-- 1; q2}] /Q(q)  (3.21a) 

G2m(j, 1, c; q) = Gzm+ I(L 3, c; q) 

= q 2m~m + ~ )E { S4, 48j- -  3 5 , 6jZ -- 8j + 2; q 2} 

+ {84, 48j--77, 6j2-- 20j + 16; qZ}]/Q(q)  (3.21b) 

The expressions (3.21) need not be the same as (3.20a), but on substitution 
into (3.15) they must yield the same results for F(a). We have been able to 
verify this directly. 

Substituting the results (3.20) into (3.15) and applying the conjugate 
modulus transformations (2.16)-(2.20) (ignoring a-independent factors that 
cancel out of (2.10)), we find for m large and a, b = 1, 2, 3 that 

F ( a ) =  ~, 01 , - e  2,s 03 6 , e  2rcs/3 
j = 2a,7 -- 2a 

+ ( - -  1 ) m ( b -  2) r  02 6 ' e - 2 " / 3  (3.22) 

where 
6/(1), d(2), d(3) = 2, 1, 2 (3.23) 

and the function ~(s) is defined in (3.19). 
If we use the alternative expressions (3.21), then for b = 1 or 3 we find 

that 

�9 2rcj 

+ 03 - f f - - y m ( b ) - - ~ ,  e .,/,2 (3.24) 

where 
q( s ) = 2 - 1/2 e -  7rcs/24/ R (  - -  e -  7.,) (3.25) 

7m(b)=~/24  if m + ( 3 - b ) / 2 i s e v e n  
(3.26) 

= 5rc/24 if m + (3 - b)/2 is odd 

The factor r/(s) remains if we discard only the a-independent factors 
that we discarded in (3.22). Thus for b = 1 or 3 the expressions (3.22) and 
(3.24) must be precisely the same; again, we have been able to verify this 
directly. 
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4. " S U M S - O F - P R O D U C T S "  I D E N T I T I E S  

We now have expressions for the unnormalized probabilities F(a) in 
each regime. The next step is to determine the normalized probabilities 
P(a) from (2.10), which means evaluating the sum 

M=F(1)+ F(2)+ F(3) (4.1) 

In regimes III and IV we see from (3.18) and (3.22) that 

F(a) = L(2a) + L(7 - 2a) (4.2) 

where L(j) is the summand on the RHS of the respective equation. It has 
the property that L ( 7 ) =  0, so (4.1) can be written as 

7 

M= ~ L(j) (4.3) 
j = l  

Since L(j) is periodic of period 7, the sum (4.3) is over a full period. 
We should note that F(a) may depend on b and c (which determine 

the occupancy of the boundary sites) and may have a residual dependence 
(modulo 2 or 5) on rn. When evaluating (4.1) or (4.3), b, e, and m must be 
kept fixed. 

In each regime, F(a) or L(j) is a sum of products of elliptic functions 
with different nomes. As in the hard-hexagon {2) and 8VSOS (7) models, 
there exist mathematical identities that enable us to write M as a simple 
product of elliptic functions. 

The normalized probability P(a) is then given by 

P(a) = F(a)/M (4.4) 

F(a) being defined by (3.2), (3.9), (3.18), or (3.22). 

Regimes I and I I .  In these regimes we can immediately use the 
corresponding identity of the 8VSOS model. These are (3.2.25) and (3.2.27) 
of Ref. 7. Here we use the conjugate modulus form of these identities, which 
can be readily obtained from (3.3.18) and (3.1.9) of Ref. 7, together with 
the convention given after (3.1.2). The identities are given in Ref. 7 for all 
positive values (even or odd) of an integer r; here we quote them for the 
case when r is odd, i.e. 

r = 2 n + l  
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where n is any positive integer. Then the identities can be written as 

a = l  

r odd 

where It] < 1, j is any odd integer, and the 2~,j are defined as functions of t 
and the integers a, j by (3.10) and (3.11). (We need only (4.6) as written, 
but it is also true if j is even and the summation is taken through even 
values of r from 2 to r -  l.) 

For  regimes I and II, F(a) is given by (3.2) and (3.9), where % is 
defined following (3.3) 

~ ' i '  ~72, 'I73 ~--- 1, 5, 3 (4.7) 

Substituting these expressions into (4.1) (and for regime II replacing the a- 
summation by a sum over ra), we obtain precisely the LHS of (4.5) and 
(4.6), with r =  7 and t=exp(-2rcs/5). Thus 

M = 7 0 3 ( 0  , c - 2 8 ~ s )  02(0 , - - e  14~rs/5) for regime I (4.8) 

= 2e--r~S/4Q(e -14~zs/5) for regime II (4.9) 

Regime Ill. Since the summation identities needed for regimes I 
and II are the same as those of the 8VSOS model, it is natural to see if this 
is also true in regime III. The corresponding 8VSOS identity can be 
obtained from (3.3.18c) and (3.1.9) of Ref. 7, correcting the definition 
(3.3.16) to s = pl/(4r--d). Writing r in Ref. 7 as rT, we find that we need to 
take rl = 7/2, which is not allowed as rl must be an integer. 

We need to extend the 8VSOS identity to half-integer values of r l ,  i.e., 
to r 1 = r/2 where r is an odd integer. This can be done (in some ways it is 
easier than for integer values). We obtain two relevant identities, true for 
all odd integers r~> 3 and for all complex numbers u, t such that It r < 1 

j~lOl(4~J, t2r 4) 03(~-~-u,t) 

= rOl(2u, t 2r) 04[(?" -- 2)u, t r(r-2) ] (4.10a) 

j~_ l Ol (4;J, t2r--4) O2 (~J---u, t) 

= --rO4(2u , t 2r) 01 [ ( r -  2)u, I r ( r -2)]  (4.lOb) 
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(These identities can be obtained fairly straightforwardly by using the series 
expansions of the theta functions: eq. 8.192 of Ref. 10.) 

The sum M is given by (4.3), where L(j) is the summand in (3.18). We 
see that we can evaluate M by using (4.10) with r =  7, t = exp( -~s /5 ) ,  u = 
nc~(b, c)/10. This gives 

M= 7Ol I~~ C), e 14~s/5104 [.~c~(b' C), e- V~s ] (4.11) 

(From (3.18), L(j) is the sum of two terms, the second containing a factor 
sign (b-c). From (4.10b), the sum of these terms contains a factor 
01[~c~(b, c)/2, e-WS]. Since e(b, c) is even if b r c, it follows that the sum of 
the second terms is always zero.) 

R e g i m e  IV. This case is very similar to regime III. If rl is the r of 
Ref. 7, we find that our results (3.22) look like the 8VSOS ones with 
r~ = 7/2. Thus we need to extend the 8VSOS identities to half-integer values 
of rl.  

We find, for all odd integers r >~ 3 and all complex numbers u, t with 
Itl < 1, that 

= rOl(2u, - t r) 04[(r - 4)u, t r(r -4)] (4.12a) 

0 
j = l  

=rO2(2u, --t r) 01[(r--4)u, t r(r 4)] (4.12b) 

(Again, these identities can be proved using the series expansions of the 
theta functions.) 

The function L(j) is now the summand of (3.22), so we can evaluate 
M by using (4.12) with r = 7 ,  t=exp(-2~zs/3), and u=~d(b)/6. As in 
regime III, the second term in L(j), proportional to ( b -  2) ~(s), gives zero 
contribution to M, either because b = 2 or because (4.12b) gives a result 
proportional to 01(re). Thus 

M= 7Ot [~d~b), _e -14~s /3]On[~ ,e  14~s] (4.13) 
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5. P H A S E S  

The local probabilities P(a) are given by (4.4), where for regimes 
I ..... IV, respectively, F(a) is given by (3.2), (3.9), (3.18), and (3.22), and M 
is given by (4.8), (4.9), (4.11), (4.13). 

As we remarked in Section 2, P(a) may have an implicit dependence 
on m and on b and c (which determine the occupancy of the boundary 
sites). F rom the above results we find no such dependence in regime I, 
which implies that the system is then in a disordered phase. In regime II, 
P(a) depends on m, b, c via the integer m + c~(b, c) and only on this to 
modulo 5. The ground states are therefore those in which m+et(b, c) 
remains constant as m increases, taking b = 3 -  o m +1 and c = 3 -  a m + 2 to 
depend on m. From (3.4), it follows that in the ground state the occupation 
numbers crl,..., am+2 form a sequence that repeats modulo 5 

�9 " 0  1 1 0 2 0  1 1 0 2 0 . . .  (5.1) 

Thus there are five phases, corresponding to where this sequence begins: 
these in turn correspond to the five distinct values of m + c~(b, c) in (3.9). In 
some sense there is an element of disorder in regime II, in that fixing 
b, c = 3 ,  3 (i.e., O-m+1, O'm+2=0, 0) gives the same function P(a) as taking 
b , c = 3 ,  1 (O'm + 1, O'm+2 = 0, 2).  

In regime III,  we see from (3.18) that if b = c =  2 or 3, then there is no 
dependence on m: these correspond to the two uniform ground states 
�9 .. 1 1 1 1.- .  and . - -0  0 0 0 " - .  Otherwise F(a) remains constant if b 
and c alternate as m increases. Thus the ground states are 
�9 ".0 1 0 1 0 1 . . -  and . . . 0  2 0 2 0 2 " " :  in each case there are two ways 
of starting the sequence, so in regime II I  there are two uniform phases and 
four alternating phases. 

In regime IV we find from (3.22) that there is one uniform phase 
(b = 2) and two alternating phases (b = 1, 3), with ground-state sequences 

1 1 1 1  l - . .  0 2 0 2 0 - - .  2 0 2 0 2 " -  (5.2) 

6. C R I T I C A L  B E H A V I O R  

The Boltzmann weights, and hence the probabili ty P(a) that the center 
site has 3 - a particles, are functions of the parameter  p. When p -+ 0, we 
find in each regime that P(a) ~ Po(a), where for a = 1, 2, 3 

Po(a) = (4/7)sinZ(rta/7) (6.1) 
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This is independent of m, b, c so is the same for all phases. All order 
parameters (which measure the difference between phases) therefore vanish, 
suggesting the system is critical at p = 0. 

The Boltzmann weights are given by eq. (4.1) of I and are analytic 
functions of p that approach their p = 0 values linearly. We can therefore 
regard p as a "deviation from criticality" variable, similar to (T-Tc) /Tc .  
Expanding our results for P(a) in powers of p to leading order we find for 
the four regimes that 

I 

II 

P(a)/Po(a) = 1 - ( -p)2 /5[1  + 2 cos(2rca/7)] + O(p, p6/5) (6.2a) 

P(a)/Po(a) = 1 + 4p 2/25 cos(zc%/7) cos{2rc[m + e(b, c)]/5 } 

+ O(p 3/25) (6.2b) 

III e(a)/eo(a) = 1 - 4 p  3/2~ cos(tea/7) cos[Tz~(b, c)/5] + O(p 2/5) 

+ sign(b - c ) ( -  1 )m{2 3/2199/160 sec(47ta/7) 

x sec[zce(b, c)/10] + 0(p5/32)} (6.2c) 

IV P(a)/Po(a) = 1 - 4( _p)1/2 cos(ha/7) cos[red(b)~3] + O(p, p4/3) 

+ ( - l )'~(b - 2) { 2 - 3/2( _ p)5/16 sec(47za/7 ) 

x sec[rcd(b)/6] + 0(p31/48)} (6.2d) 

As in the 8VSOS model, (ll) we can define various order parameters, 
each with its own critical exponent. For  regimes II, III, IV, the leading 
deviations from criticality are proportional to the differences between the 
P(a) for different phases and have exponents 

/3 = 2/25 

= 9/160 (6.3) 

= 5/16 

for regimes II, III, IV, respectively. 
The probabilities P(a) are in general local properties of the model: 

they depend on the site whose occupation number is taken to be ~1. For  
definiteness we have up to now taken this to be the center site, but it could 
be any site deep within the lattice. 

Thus we can fix the boundary conditions (the values of b - - - 3 -  am +1 
and c = 3 -  a,,+2) and define an average value _P(a) of P(a) by averaging 
over central site locations. The effect of this is to average (6.2) over m. In 
regimes I, III, IV we can immediately obtain the results by simply deleting 
the terms containing a factor ( - 1)m. For  regime II we have to go to higher 
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order: the calculation is given in Ref. 7, and from (3.3.24) we obtain for 
regime II 

-P(a)/Po(a) = 1 + p2/5[1 + 2 cos(2zcza/7)] + "'" (6.4) 

(Note that this differs from the regime I result (6.2a) only by sign factors.) 
For regimes I and II the averaged/5(a) is independent of b and c, i.e., 

of boundary conditions, so it is natural to treat P(a) as a lattice gas den- 
sity, with critical exponent 

1 - c ~ = ~  (6.5) 

For regimes III and IV, P(a) still depends (via c~(b, c) and d(b)) on the 
boundary conditions, so their leading deviations from criticality are order 
parameters. (In fact, for nonzero p the model lies on a first-order 
coexistence surface in an extended parameter space, just as the regime III 
hard-hexagon model does. (12a3) The differences in P(a) for different boun- 
dary conditions are the discontinuities that occur as this coexistence curve 
is crossed.) From (6.2c) and (6.2d), the corresponding critical exponents 
a r e  

/ ~ = 3  (6.6) 
1 

for regimes III and IV, respectively. 

7. S U M M A R Y  

For the three-state model defined in I, we have obtained the local 
probability P(a) = F(a)/M that a site contains 3 - a  particles. For the four 
regimes I,..., IV the results for F(a) are given in (3.2), (3.9), (3.18), (3.22), 
respectively, and for M in (4.8), (4.9), (4.11) and (4.13). 

It would be of interest to extend these calculations to the general n- 
state model of this type using the n = 4  and 5 solutions for w given by 
Kuniba, Akutsu, and Wadati (6) and our general n-conjectures for the mul- 
tiple-sum expressions for the polynomials Xm(a, b, c; q). (These conjectures 
are given in I: Xm(a, b, c; q) is still given by (2.5) and (2.6), but now 2 and 
3 in (2.7) are replaced by n - 1  and n.) For regime III with n = 4  we do 
have some indications that the X,,,(a, b, c; q) may be modular functions, in 
particular that 

Xm(4,4,4;q)={9,1, O;q}_{5,1,0;q 3} /Q(q)2 (7.1) 
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This preliminary result is a conjecture based on the first 125 terms of 
the series expansion in powers of q. We emphasize that the n = 3 results 
(3.1), (3.4)-(3.8), (3.16), (3.20) are not such conjectures, but have been 
rigorously obtained from (2.6). Their proof will be given elsewhere. 

Rela t ion  t o  t h e  8 V S O S  M o d e l  

Part of the motivation for this work was to find a model 
corresponding to Gordon's  generalization of the Rogers-Ramanujan iden- 
tities, we having come to feel that the 8VSOS model did not fill this role. 
Certainly this model is quite different from the 8VSOS model, and for finite 
m the polynomials Xm(a, b, c; q) are not those of the 8VSOS model. 

It is therefore remarkable that when we take the limit m--* ~ we 
regain, in regimes I and II, precisely the 8VSOS model results for P(%) 
with r = 7. Also, in regimes III and IV our results are not the r = 7 results of 
the 8VSOS model, but they are very similar to the r = 7/2 results. In fact, 
P(a) of this paper is the same as P(a) of eqs. (3.3.18c) and (3.3.18d) of 
Ref. 7, provided r, a, 04(0,..) therein are first replaced by 7/2, 4a, 204(7zd,...); 

and d is then taken to be ~(b, c)/2 in regime III, d(b)/2 in regime IV. It will 
be interesting to see if there are analogous relations for the general n-state 
model (and to reconcile them for the hard hexagon n = 2 case, when the 
lattice gas and 8VSOS models are equivalent). 
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